187 research outputs found

    Feedback-prop: Convolutional Neural Network Inference under Partial Evidence

    Full text link
    We propose an inference procedure for deep convolutional neural networks (CNNs) when partial evidence is available. Our method consists of a general feedback-based propagation approach (feedback-prop) that boosts the prediction accuracy for an arbitrary set of unknown target labels when the values for a non-overlapping arbitrary set of target labels are known. We show that existing models trained in a multi-label or multi-task setting can readily take advantage of feedback-prop without any retraining or fine-tuning. Our feedback-prop inference procedure is general, simple, reliable, and works on different challenging visual recognition tasks. We present two variants of feedback-prop based on layer-wise and residual iterative updates. We experiment using several multi-task models and show that feedback-prop is effective in all of them. Our results unveil a previously unreported but interesting dynamic property of deep CNNs. We also present an associated technical approach that takes advantage of this property for inference under partial evidence in general visual recognition tasks.Comment: Accepted to CVPR 201

    Towards Diverse and Consistent Typography Generation

    Full text link
    In this work, we consider the typography generation task that aims at producing diverse typographic styling for the given graphic document. We formulate typography generation as a fine-grained attribute generation for multiple text elements and build an autoregressive model to generate diverse typography that matches the input design context. We further propose a simple yet effective sampling approach that respects the consistency and distinction principle of typography so that generated examples share consistent typographic styling across text elements. Our empirical study shows that our model successfully generates diverse typographic designs while preserving a consistent typographic structure

    Generative Colorization of Structured Mobile Web Pages

    Full text link
    Color is a critical design factor for web pages, affecting important factors such as viewer emotions and the overall trust and satisfaction of a website. Effective coloring requires design knowledge and expertise, but if this process could be automated through data-driven modeling, efficient exploration and alternative workflows would be possible. However, this direction remains underexplored due to the lack of a formalization of the web page colorization problem, datasets, and evaluation protocols. In this work, we propose a new dataset consisting of e-commerce mobile web pages in a tractable format, which are created by simplifying the pages and extracting canonical color styles with a common web browser. The web page colorization problem is then formalized as a task of estimating plausible color styles for a given web page content with a given hierarchical structure of the elements. We present several Transformer-based methods that are adapted to this task by prepending structural message passing to capture hierarchical relationships between elements. Experimental results, including a quantitative evaluation designed for this task, demonstrate the advantages of our methods over statistical and image colorization methods. The code is available at https://github.com/CyberAgentAILab/webcolor.Comment: Accepted to WACV 202

    Towards Flexible Multi-modal Document Models

    Full text link
    Creative workflows for generating graphical documents involve complex inter-related tasks, such as aligning elements, choosing appropriate fonts, or employing aesthetically harmonious colors. In this work, we attempt at building a holistic model that can jointly solve many different design tasks. Our model, which we denote by FlexDM, treats vector graphic documents as a set of multi-modal elements, and learns to predict masked fields such as element type, position, styling attributes, image, or text, using a unified architecture. Through the use of explicit multi-task learning and in-domain pre-training, our model can better capture the multi-modal relationships among the different document fields. Experimental results corroborate that our single FlexDM is able to successfully solve a multitude of different design tasks, while achieving performance that is competitive with task-specific and costly baselines.Comment: To be published in CVPR2023 (highlight), project page: https://cyberagentailab.github.io/flex-d

    LayoutDM: Discrete Diffusion Model for Controllable Layout Generation

    Full text link
    Controllable layout generation aims at synthesizing plausible arrangement of element bounding boxes with optional constraints, such as type or position of a specific element. In this work, we try to solve a broad range of layout generation tasks in a single model that is based on discrete state-space diffusion models. Our model, named LayoutDM, naturally handles the structured layout data in the discrete representation and learns to progressively infer a noiseless layout from the initial input, where we model the layout corruption process by modality-wise discrete diffusion. For conditional generation, we propose to inject layout constraints in the form of masking or logit adjustment during inference. We show in the experiments that our LayoutDM successfully generates high-quality layouts and outperforms both task-specific and task-agnostic baselines on several layout tasks.Comment: To be published in CVPR2023, project page: https://cyberagentailab.github.io/layout-dm
    • …
    corecore